Search results

Search for "activation energy" in Full Text gives 90 result(s) in Beilstein Journal of Nanotechnology.

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • . Subsequently, multiple electron transfers occur, leading to the generation of diverse products such as ethanol, methanol, and methane [5][6][7]. Therefore, to reduce the activation energy and to improve selectivity, the meticulous consideration of catalysts becomes imperative [8][9][10][11][12][13][14][15][16
PDF
Album
Review
Published 31 Aug 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • transferred with very low activation energy among iron ions on the octahedral sites. As we showed above, DBMP interacts with the magnetite surface, thus, it can react with the generated electrons. The following reaction path for DBMP degradation is proposed to explain our observations (a detailed description
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • scattering in this temperature range. At lower temperatures, the electronic conduction is dominated by nearest-neighbor hopping (NNH) conduction in the acceptor band, with a small activation energy ENNH ≈ 0.6 meV and an acceptor concentration of NA ≈ 1 × 1016 cm−3. These results demonstrate the enhanced
  • ]. In this case, conduction is realized through NNH of charge carriers with small activation energy directly over impurity states. The conductivity in the NNH model is given by [35]: where σ3 is a constant, ENNH is the activation energy for NNH conduction, NA is the acceptor concentration, and εr = 53.5
  • , respectively, was found, demonstrating strong scattering by phonons in this temperature range. At lower temperatures, the electronic conduction is dominated by NNH in the acceptor band with a low activation energy ENNH ≈ 0.59 meV for both NWs. These values of ENNH correspond to a concentration of acceptors of
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • result from Ni's apparent activation energy being higher than Fe's for producing oxidizing species [53]. Although Fe was attempted to be doped into LaNiO3, LaFe0.1Ni0.9O3 and LaFe0.3Ni0.7O3 still exhibited low photocatalytic capability. Until Fe doped amount was up to 50% for replacing Ni, the
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • different crystal structures, which has a strong effect on proton conductivity. In the Mg-based coordination network, dangling sulfonate groups are part of an extended hydrogen bonding network, facilitating a “proton hopping” with low activation energy; the material shows a moderate proton conductivity. In
  • and temperature can be used to estimate the activation energy EA of proton mobility by using the Arrhenius equation (Equation 1), where σ0 is a material-specific factor and kB is Boltzmann’s constant [22][23][24]: Figure 6b exhibits the Arrhenius plots, that is, ln(T·σ) vs T−1. The activation energy
  • of covalent bonds and hydrogen bonds between adjacent molecules, without mass transport [25]. For bulk liquid water, this is known as the Grotthuß mechanism, with reported activation energy values of 0.10–0.11 eV [26][27]. In the materials studied here, proton hopping can occur between H2O/H3O+ and
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • -complex wire device. In this case the linear regression reveals an activation energy of EA = 582 meV. Over all eight samples, energies ranged from 367 to 584 meV with a median of 479 meV. Thus, it is reasonable to assume thermally activated hopping conduction for these solid-state devices, as it had been
  • ligands. In subsequent steps, the electrons might hop from a pyridine (phenyl) group to another pyridine (phenyl) group or to oxidized metallic cores (Ru3+). Most interestingly, the lower limit of the activation energy determined for hopping conduction through the Ru(TP)2-complex wire device corresponds
  • well to the energy offset, ΔEH = EF − EHOMO, between the Fermi energy of the contacting electrodes and the highest occupied molecular orbital (HOMO) of the Ru complex, which we have recently determined to 330 meV [15]. This suggests that ΔEH is a relevant activation energy in ideal devices to be
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • -doping [73] or elemental doping [39][74]. Hybrid or doped photocatalysts ideally exhibit an improved photocatalytic efficacy due to the reduced recombination rate of photogenerated charge carriers and the lower activation energy. However, additional factors considerably affect the overall photocatalytic
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • the conductivity measurements, where the conductivity was slightly lower and the activation energy slightly higher for experiments with negative polarization. The values obtained for the Sm-doped ceria in the composite in this study show also good agreement to data obtained for Gd-doped ceria thin
PDF
Album
Full Research Paper
Published 15 Dec 2021

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • the involvement of π-electrons responsible for the generation of charge carriers and their switching, which results in a reduction of the electron density of the overall system and an increase in the activation energy [10]. Simultaneously, there is also a decrease in the activation energy produced by
  • that shows the conductivity at an infinitely high temperature, the parameter B is the pseudo-activation energy and it is related to the critical free volume for ion transport, and T0 is a reference temperature, also called equilibrium glass transition temperature, which has a value close to the Tg
PDF
Album
Full Research Paper
Published 18 Nov 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • atoms from the gaseous phase attach to the substrate and become adatoms. The adsorption rate ka = p exp(−Eads/T) is defined by the pressure of the gaseous phase p, activation energy for adsorption Eads, and the frequency factor ; T is the temperature measured in units of energy (eV). Adatoms can desorb
  • back into a gaseous phase with the rate kd0 = exp(−Edes/T); Edes is the activation energy for desorption. The desorption rate kd0 defines the average lifetime of the adatom on the layer τd in the common way: τd = [kd0]−1. By considering adatoms as interacting mobile particles, the desorption rate is
  • from [78] for the system Ge on SiO2 at T = 773 K: activation energy for desorption Ed ≃ 0.44 eV and activation energy for diffusion ED ≃ 0.24 eV. By exploiting the formula for the diffusion length LD = with the lattice constant a = 5.6 × 10−10 for Ge we get LD = a2exp((Ed − ED)/T) ≃ 50 nm. With the
PDF
Album
Letter
Published 13 Jul 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • account the size distribution of nanoparticles in the AgNPs blue sample. The temperature analysis showed that the observed enhancement increases with the increase of the temperature. The calculated activation energy for a AgNPs sample is larger than that for pure water, which is an effect of water
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • diffusion happens either in volume (bulk diffusion) or through a grain boundary mechanism (short circuit diffusion) [22]. The latter is expected to be dominant as it exhibits a lower activation energy [23]. The following mechanism was proposed to explain the different steps of the oxidation process (Figure
PDF
Album
Full Research Paper
Published 22 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • activation energy of rotational motion is below 200 meV. The orientation is given as the angle of the molecular axis with respect to the direction of the Ir(100) surface. (d, e) Top and side view, respectively, of 2 on 1BL CoO. Insets in (a) and (d) are STM-DFT simulations at bias voltages of −1.6 V and
PDF
Album
Full Research Paper
Published 05 Oct 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • a change in the surface recombination of gold on silicon formed during cooling [29]. The diffusion activation energy of the Ostwald ripening process, EA, can be calculated using the qualitative correlation where T is the temperature, dd is the mean droplet diameter, and kB is the Boltzmann constant
  • . For the data shown in Figure 2b, the value obtained for of EA is 1.79 eV, which is in agreement with the values in the literature (1.56 eV). For gold on silicon oxide, the activation energy for surface diffusion cannot be calculated since the temperatures considered here are too low to cause a
  • Laplace pressure is not reduced by re-evaporation but by Ostwald ripening, which requires a medium for material transport and has a lower activation energy than evaporation. The monolayer of gold between the droplets represents this medium. In addition, the distribution of the droplet diameter values also
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • instability taking the form of large ZPL spectral diffusion and discrete jumps of up to 100 nm (red-shifted) under ambient conditions. However, they are most stable under illumination at 532 nm [130]. A photochemical reaction with activation energy between 2.3 and 3.0 eV potentially contributes to the ZPL
PDF
Album
Review
Published 08 May 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • energy, with binding decreasing as tensile strain increases. While Li can diffuse through the monolayer, the activation energy required is greater than 1 eV and increases with decreasing Se content. Investigation of on-surface diffusion showed that the magnitude of the activation energies is suitable for
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • sensors show an enhanced response when the temperature is increased from 150 to 200 °C, while for the pure ZnFe2O4 sensor the response has a maximum at 175 °C. This tendency is ascribed to the higher surface activation energy at elevated temperature. As a result, the activation energy barrier of surface
PDF
Album
Full Research Paper
Published 16 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • they are strong covalent (chemisorption) or weak (physisorption), highly impact the sensor performance, that is, the sensitivity, response and recovery time, and detection range. Unlike metal-oxide-based gas sensors, CNT-based sensors operate at room temperature (low activation energy) and can
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • MOFs with ultranarrow pore apertures. Under elevated pressure and temperature, the gas molecules enter the pores, but they are not released immediately when normal conditions are re-established. This is due to the activation energy barrier for gas diffusion of the entrapped sorbate within the pores
  • SF6 was gradually released from 150 to 390 °C (Figure S3 in Supporting Information File 1). Therefore, this temperature range was used to quantify the amount of loaded SF6 from the TGA data (Table 1). The activation energy for the guest release was estimated by temperature-modulated TGA to be as high
  • to obtain kinetic parameters during a mass loss [30][31]. Until now it has been mainly used to study organic polymers (e.g., poly(ethylene) and poly(styrene)) and simple inorganic compounds (e.g., calcium carbonate and calcium oxalate) [31]. Here we used the method to estimate the activation energy
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019

The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98

  • Simon Krause,
  • Volodymyr Bon,
  • Hongchu Du,
  • Rafal E. Dunin-Borkowski,
  • Ulrich Stoeck,
  • Irena Senkovska and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2019, 10, 1737–1744, doi:10.3762/bjnano.10.169

Graphical Abstract
  • large impact on the properties of flexible MOFs by altering the crystal morphology, size and mosaicity. In many regards, DUT-98 is found to behave similar to DUT-8(Ni) and the applied methods indicate changes in the activation energy upon crystal downsizing to be responsible for the observed behavior
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • and surface area. The necessary activation energy is high and the process is slow. In addition, some works have also confirmed that the anatase phase can be stable up to 600 °C, and the rutile phase can be delayed to higher temperatures [36][37][38]. The anatase crystalline structure was confirmed by
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • °C. The ZnO/SiC nanocomposites were characterized by a higher concentration of chemisorbed oxygen, higher activation energy of conductivity, and higher sensor response towards CO and NH3 as compared with ZnO nanofibers. The obtained experimental results were interpreted in terms of the formation of
  • material conductance, kB is the Boltzmann constant, the values of the activation energy Ea were calculated. For ZnO nanofibers, Ea = 0.40 ± 0.04 eV. This value lies within the error with the potential barrier at the grain boundaries eVs (the surface potential barrier energy between particles of
  • nanocrystalline zinc oxide) determined by the method of temperature-stimulated conductance measurements [29][30] as eVs = 0.44 eV at T = 500 °C [31]. The creation of ZnO/SiC nanocomposites leads to an increase in the activation energy of conductivity up to 0.71–0.78 eV, and the value of Еa does not depend on the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • a phase-locked loop (PLL). This was first performed by Bennewitz et al. to measure the mobility of F− vacancies in a CaF2 crystal [27]. Schirmeisen et al. later improved the technique by performing the measurements at various temperatures to extract the activation energy for ionic transport in Li
PDF
Album
Supp Info
Review
Published 01 Mar 2019

A novel polyhedral oligomeric silsesquioxane-modified layered double hydroxide: preparation, characterization and properties

  • Xianwei Zhang,
  • Zhongzhu Ma,
  • Hong Fan,
  • Carla Bittencourt,
  • Jintao Wan and
  • Philippe Dubois

Beilstein J. Nanotechnol. 2018, 9, 3053–3068, doi:10.3762/bjnano.9.284

Graphical Abstract
  • slopes of these lines using the following expression: The fitting results and Eα data are summarized in Table 4. Results show that the apparent activation energy increases as a whole with increasing conversion. Combined with the TGA data and the data of α as a function of T, the Eα values of NLDH can be
PDF
Album
Full Research Paper
Published 19 Dec 2018
Other Beilstein-Institut Open Science Activities